Weighted discrete least-squares polynomial approximation using randomized quadratures
نویسندگان
چکیده
منابع مشابه
Least-squares polynomial approximation
We construct symmetric polar WAMs (Weakly Admissible Meshes) with low cardinality for least-squares polynomial approximation on the disk. These are then mapped to an arbitrary triangle. Numerical tests show that the growth of the least-squares projection uniform norm is much slower than the theoretical bound, and even slower than that of the Lebesgue constant of the best known interpolation poi...
متن کاملEffectively Subsampled Quadratures for Least Squares Polynomial Approximations
This paper proposes a new deterministic sampling strategy for constructing polynomial chaos approximations for expensive physics simulation models. The proposed approach, effectively subsampled quadratures involves sparsely subsampling an existing tensor grid using QR column pivoting. For polynomial interpolation using hyperbolic or total order sets, we then solve the following square least squ...
متن کاملThe Sensitivity of Least Squares Polynomial Approximation
Given integers N n 0, we consider the least squares problem of nding the vector of coeecients ~ P with respect to a polynomial basis P N j=0 wn(zj) 2 jf(zj) ? P (zj)j 2. Here a perturbation of the values f(zj) leads to some perturbation of the coeecient vector ~ P. We denote by n the maximal magniication of relative errors, i.e., the Euclidean condition number of the underlying weighted Vanderm...
متن کاملUniform approximation by discrete least squares polynomials
We study uniform approximation of differentiable or analytic functions of one or several variables on a compact set K by a sequence of discrete least squares polynomials. In particular, if K satisfies a Markov inequality and we use point evaluations on standard discretization grids with the number of points growing polynomially in the degree, these polynomials provide nearly optimal approximant...
متن کاملDiscrete Least Squares Approximation by Trigonometric Polynomials
We present an efficient and reliable algorithm for discrete least squares approximation of a real-valued function given at arbitrary distinct nodes in [0, 2tt) by trigonometric polynomials. The algorithm is based on a scheme for the solution of an inverse eigenproblem for unitary Hessenberg matrices, and requires only O(mn) arithmetic operations as compared with 0(mn ) operations needed for alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2015
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2015.06.042